一般来讲,OC故障的来源有以下三个方面:
1、当逆变模块运行电流超大,达额定电流的3倍以上时,IGBT管子的管压降上升到7V以上时,由驱动IC返回过载OC信号,通知CPU,实施快速停机保护。
2、从变频器输出端的三只电流互感器(小功率机型有的采用两只),采集到急剧上升的异常电流后,由电压比较器(或由CPU内部电路)输出一个OC信号,通知CPU,实施快速停机保护。
3、IGBT管子已有或正在发生了短路性和开路性损坏。由驱动IC检测到“极其异常的”管压降,尤其是开路时管压降要大于大于7V的保护动作阀值。
这是故障检测电路及驱动电路正常时,变频器OC故障的三个来源。原因为负载侧出现电机堵转等异常过负载现象,或变频器模块内的质量缺限、器件老化等造成。
而由故障检测电路和驱动电路方面造成报OC故障的原因也有以下三方面:
1、三相输出电流检测电路。当电流互感器的内电路损坏,使故障信号输出脚输出异常高的电压信号时,CPU以为运行电流大到已到短路程度了,赶快报OC信号吧。
2、驱动IC损坏,如J316的6脚内场效应管子短路后,将6脚电压拉为故障检出状态的低电平,CPU要是再不报OC信号,那就不是CPU了。
3、驱动IC虽未损坏,但驱动电路的异常导致了模块异常的工作状态,驱动电路在此时报出OC信号,不但不算误报,而且是非常及时和可表扬的。驱动IC的供电常采用正负双电源的方式,其正电压提供IGBT导通的激励电流。其负电压为IGTB管子的截止提供助力,强制拉出IGBT结电容的电荷,使其更为可靠和快速地截止。当正电压滤波电容(往往采用47uF或100uF电容,大功率机型也有采用330uF的)的容量大为减小时,IGBT管子因激励不足,即使运行在额定电流以下,也呈现较大的管压降,经检测电路处理,CPU报出OC故障;此际的故障表现为:变频器空载或带有极轻负载时,运行正常,稍微加载即报OC故障。
如果说正电压滤波电容的失效会导致IGBT管子的激励不足,而促使驱动IC报出OC故障,IGBT管子尚不存在较大危险的话,那么负电压滤波电容的失效,则就危险得多了。在某一相上臂管子开通的同时,会将主回路正电压跳变到下管的C极上,如果负压钳位不足,管子的结电容瞬时吸入电流有可能造成下臂管子的误导通,其后果是两只共通的管子对主直流电源造成了短路!在此种情况下模块极易炸裂!无论是正电压或负电压滤波电容的失效,变频器都有可能报出OC故障。
以上是故障检测和驱动电路方面报OC故障的“现象”,还有报OC故障的“隐现象”和似是而非的报OC现象,往往不被人注意。如下三例:
1、检修一台阿尔法变频器,CNN1端子的第8脚为主回路直流电压检测信号输出脚,正常时应为3.5V左右,当因电路损坏造成5V以上的“信号输出”(相当于三相交流输入电压达500V以上了)时,CPU认为危及模块运行的安全了,于是不报过电压故障,而是上电即警示OC,以引起用户的注意。
2、在对阿尔法小功率变频器维修的过程中,发现该变频器有一个通病——容易跳OC故障。其表现为:多在启、停操作过程中跳故障,但有时也在运行中跳故障;有时候莫名其妙地又好了,能运行长短不一的一段时间。在以为已经没有问题的时候,又开始频繁跳OC故障;空载时用表笔测量U、V、W输出电压时,易跳故障,但接入电机后起动运行,又不跳了,再过一阵子,接入电机还是跳OC故障。
无论怎么查找故障原因和进行故障检测电路逐一的排查,就是找不出故障原因,可能电路存在说不清道不明的某种干扰,但干扰的来源与起因又很难查找。莫非是启/停瞬间——逆变驱动模块的“加载和卸载”期间,导致了CPU供电的波动而跳故障吗?测量CPU供电为4.98V,很稳定,满足要求呀。后来偶尔将主板供电的4.98V调整为5.02V,再作起/停试验,故障竟然排除了!故障原因竟然为5V供电偏低!很见此故障的隐蔽之深。
3、修理一台P9型英威腾机器时,检查发现:上电,操作面板显示H.00,所有操作全无效,CPU拒绝所有操作。测量故障信号汇集处理电路U7-HC4044的4、6脚的过流信号,皆为负电压,而正常时静态应为6V正电压。顺电流检测电路往前查找,测电流信号输入放大U12D的的8、14为0V,正常;U13D的14脚为负8V,有误过流信号输出。将R151焊开,断开此路过流故障信号,操作面板的所有参数设置均正常。故障原因为上电后检测到有过流信号,于是拒绝所有操作,先让变频器歇歇。